Quantum simulation of the Hubbard model with dopant atoms in silicon
نویسندگان
چکیده
In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose-Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model.
منابع مشابه
Band transport across a chain of dopant sites in silicon over micron distances and high temperatures
Macroscopic manifestations of quantum mechanics are among the most spectacular effects of physics. In most of them, novel collective properties emerge from the quantum mechanical behaviour of their microscopic constituents. Others, like superconductivity, extend a property typical of the atomic scale to macroscopic length scale. Similarly, features of quantum transport in Hubbard systems which ...
متن کاملنانوساختارهای بینظم سیلیکون: جایگزیدگی و گاف انرژی
Renewable energy research has created a push for new materials one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H) embedded in hydrogenated amorphous silicon (a-Si:H). The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC) in nc-Si: H. Increasing the gap of a-Si system causes solar...
متن کاملPreparation and Characterization of Eu-Doped Diamond Samples by Atom Probe Tomography
Practical quantum technologies built from wide band gap semiconductors, in particular diamond and silicon carbide, have become realistic thanks to careful defect engineering of these materials. Color centers, created by point defect dopant atoms, such as silicon and nitrogen, are the basis for nanomagnetomers that can sense and measure the state of a single nuclear spin and provide a platform f...
متن کاملSingle-Atom Nanoelectronics and Spin Qubits in Silicon
Electron spin qubits in silicon are excellent candidates for scalable quantum information processing (QIP) due to the very long spin lifetimes (T1) and coherence times (T2) that are accessible in silicon [1] and because of the enormous investment to date in silicon MOS technology. Electron spin qubits in silicon can be localized using either dopant atoms (eg. phosphorus) [2,3] or in electrostat...
متن کاملNondestructive imaging of atomically thin nanostructures buried in silicon
It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016